The Analysis of Polymer Sample TOF-SIMS Data Using Autoencoder

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) data are generally so complex that multivariate analysis such as principal component analysis (PCA) and multivariate curve resolution (MCR) are often necessary to interpret TOF-SIMS data. Interpreting more complex TOF-SIMS data requires furth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Surface Analysis 2022/02/10, Vol.28(2), pp.110-126
Hauptverfasser: Ito, Masaru, Matsuda, Kazuhiro, Aoyagi, Satoka
Format: Artikel
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-of-flight secondary ion mass spectrometry (TOF-SIMS) data are generally so complex that multivariate analysis such as principal component analysis (PCA) and multivariate curve resolution (MCR) are often necessary to interpret TOF-SIMS data. Interpreting more complex TOF-SIMS data requires further data analysis methods using machine learning and deep learning. In this study, the application of autoencoder which is one of the unsupervised methods based on artificial neural networks into TOF-SIMS data of three polymers was evaluated.
ISSN:1341-1756
1347-8400
DOI:10.1384/jsa.28.110