New proximal type algorithms for convex minimization and its application to image deblurring

In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-10, Vol.41 (7), Article 333
Hauptverfasser: Kesornprom, Suparat, Cholamjiak, Prasit, Park, Choonkil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator Kesornprom, Suparat
Cholamjiak, Prasit
Park, Choonkil
description In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are presented to illustrate the performance of the proposed algorithm in image deblurring.
doi_str_mv 10.1007/s40314-022-02042-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2719732814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719732814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d219932fb0e41319e199fea7eb1baca2dcec66b01daa203f853587729e8ab4d63</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8Vycf27RHWfyCRS96E0LaTtcsbVOTVnf99Wat4M3DMMzw3pt5j5BzBpcMQF0FCYLJBDiPBZIn6oDMWAYqAQH8kMw4F1kiUhDH5CSEDYBQTMoZeX3ET9p7t7Wtaeiw65GaZu28Hd7aQGvnaem6D9zS1na2tV9msK6jpquoHQI1fd_YctoNjkaNNdIKi2b03nbrU3JUmybg2W-fk5fbm-flfbJ6untYXq-SUrB8SCrO8lzwugCULG4wjjUahQUrTGl4VWKZpgWwyhgOos4WYpEpxXPMTCGrVMzJxaQbjbyPGAa9caPv4knNFcuV4BmTEcUnVOldCB5r3fv4sd9pBnqfop5S1DFF_ZOiVpEkJlLo947Q_0n_w_oGlf12eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719732814</pqid></control><display><type>article</type><title>New proximal type algorithms for convex minimization and its application to image deblurring</title><source>Springer Nature - Complete Springer Journals</source><creator>Kesornprom, Suparat ; Cholamjiak, Prasit ; Park, Choonkil</creator><creatorcontrib>Kesornprom, Suparat ; Cholamjiak, Prasit ; Park, Choonkil</creatorcontrib><description>In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are presented to illustrate the performance of the proposed algorithm in image deblurring.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-022-02042-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Hilbert space ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Optimization</subject><ispartof>Computational &amp; applied mathematics, 2022-10, Vol.41 (7), Article 333</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d219932fb0e41319e199fea7eb1baca2dcec66b01daa203f853587729e8ab4d63</citedby><cites>FETCH-LOGICAL-c319t-d219932fb0e41319e199fea7eb1baca2dcec66b01daa203f853587729e8ab4d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-022-02042-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-022-02042-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kesornprom, Suparat</creatorcontrib><creatorcontrib>Cholamjiak, Prasit</creatorcontrib><creatorcontrib>Park, Choonkil</creatorcontrib><title>New proximal type algorithms for convex minimization and its application to image deblurring</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are presented to illustrate the performance of the proposed algorithm in image deblurring.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Hilbert space</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8Vycf27RHWfyCRS96E0LaTtcsbVOTVnf99Wat4M3DMMzw3pt5j5BzBpcMQF0FCYLJBDiPBZIn6oDMWAYqAQH8kMw4F1kiUhDH5CSEDYBQTMoZeX3ET9p7t7Wtaeiw65GaZu28Hd7aQGvnaem6D9zS1na2tV9msK6jpquoHQI1fd_YctoNjkaNNdIKi2b03nbrU3JUmybg2W-fk5fbm-flfbJ6untYXq-SUrB8SCrO8lzwugCULG4wjjUahQUrTGl4VWKZpgWwyhgOos4WYpEpxXPMTCGrVMzJxaQbjbyPGAa9caPv4knNFcuV4BmTEcUnVOldCB5r3fv4sd9pBnqfop5S1DFF_ZOiVpEkJlLo947Q_0n_w_oGlf12eg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Kesornprom, Suparat</creator><creator>Cholamjiak, Prasit</creator><creator>Park, Choonkil</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>New proximal type algorithms for convex minimization and its application to image deblurring</title><author>Kesornprom, Suparat ; Cholamjiak, Prasit ; Park, Choonkil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d219932fb0e41319e199fea7eb1baca2dcec66b01daa203f853587729e8ab4d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Hilbert space</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kesornprom, Suparat</creatorcontrib><creatorcontrib>Cholamjiak, Prasit</creatorcontrib><creatorcontrib>Park, Choonkil</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kesornprom, Suparat</au><au>Cholamjiak, Prasit</au><au>Park, Choonkil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New proximal type algorithms for convex minimization and its application to image deblurring</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><artnum>333</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are presented to illustrate the performance of the proposed algorithm in image deblurring.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-022-02042-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-10, Vol.41 (7), Article 333
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2719732814
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Hilbert space
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Optimization
title New proximal type algorithms for convex minimization and its application to image deblurring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20proximal%20type%20algorithms%20for%20convex%20minimization%20and%20its%20application%20to%20image%20deblurring&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Kesornprom,%20Suparat&rft.date=2022-10-01&rft.volume=41&rft.issue=7&rft.artnum=333&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-022-02042-7&rft_dat=%3Cproquest_cross%3E2719732814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719732814&rft_id=info:pmid/&rfr_iscdi=true