New proximal type algorithms for convex minimization and its application to image deblurring

In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-10, Vol.41 (7), Article 333
Hauptverfasser: Kesornprom, Suparat, Cholamjiak, Prasit, Park, Choonkil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we are interested in solving a convex minimization problem in real Hilbert spaces. We propose a new modified proximal algorithm using the inertial extrapolation and the linesearch technique. Its weak convergence theorems are established under mild conditions. Numerical experiments are presented to illustrate the performance of the proposed algorithm in image deblurring.
ISSN:2238-3603
1807-0302
DOI:10.1007/s40314-022-02042-7