Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII
The wonderful compactification \(X_m\) of a symmetric homogeneous space of type AIII\((2,m)\) for each \(m \geq 4\) is Fano, and its blowup \(Y_m\) along the unique closed orbit is Fano if \(m \geq 5\) and Calabi-Yau if \(m = 4\). Using a combinatorial criterion for K-polystability of smooth Fano sp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The wonderful compactification \(X_m\) of a symmetric homogeneous space of type AIII\((2,m)\) for each \(m \geq 4\) is Fano, and its blowup \(Y_m\) along the unique closed orbit is Fano if \(m \geq 5\) and Calabi-Yau if \(m = 4\). Using a combinatorial criterion for K-polystability of smooth Fano spherical varieties obtained by Delcroix, we prove that \(X_m\) admits a K\"ahler-Einstein metric for each \(m \geq 4\) and \(Y_m\) admits a K\"ahler-Einstein metric if and only if \(m = 4, 5\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2209.14720 |