Kähler-Einstein metrics on smooth Fano toroidal symmetric varieties of type AIII

The wonderful compactification \(X_m\) of a symmetric homogeneous space of type AIII\((2,m)\) for each \(m \geq 4\) is Fano, and its blowup \(Y_m\) along the unique closed orbit is Fano if \(m \geq 5\) and Calabi-Yau if \(m = 4\). Using a combinatorial criterion for K-polystability of smooth Fano sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Hong, Kyusik, Hwang, DongSeon, Park, Kyeong-Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The wonderful compactification \(X_m\) of a symmetric homogeneous space of type AIII\((2,m)\) for each \(m \geq 4\) is Fano, and its blowup \(Y_m\) along the unique closed orbit is Fano if \(m \geq 5\) and Calabi-Yau if \(m = 4\). Using a combinatorial criterion for K-polystability of smooth Fano spherical varieties obtained by Delcroix, we prove that \(X_m\) admits a K\"ahler-Einstein metric for each \(m \geq 4\) and \(Y_m\) admits a K\"ahler-Einstein metric if and only if \(m = 4, 5\).
ISSN:2331-8422
DOI:10.48550/arxiv.2209.14720