Gravothermal evolution of dark matter halos with differential elastic scattering

We study gravothermal evolution of dark matter halos in the presence of differential self-scattering that has strong velocity and angular dependencies. We design controlled N-body simulations to model Rutherford and Møller scatterings in the halo, and follow its evolution in both core-expansion and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2022-09, Vol.2022 (9), p.77
Hauptverfasser: Yang, Daneng, Yu, Hai-Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study gravothermal evolution of dark matter halos in the presence of differential self-scattering that has strong velocity and angular dependencies. We design controlled N-body simulations to model Rutherford and Møller scatterings in the halo, and follow its evolution in both core-expansion and -collapse phases. The simulations show the commonly-used transfer cross section underestimates the effects of dark matter self-interactions, but the viscosity cross section provides an accurate approximation for modeling angular-dependent dark matter scattering. We investigate thermodynamic properties of the halo, and find that the three moments of the Boltzmann equation under the fluid approximation are satisfied. We further propose a constant effective cross section, which integrates over the halo's characteristic velocity dispersion with weighting kernels motivated by kinetic theory of heat conduction. The effective cross section provides a good approximation to differential self-scattering for most of the halo evolution. It indicates that we can map astrophysical constraints on a constant self-interacting cross section to an SIDM model with velocity- and angular-dependent scatterings.
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2022/09/077