A 3D Peptide/[60]Fullerene Hybrid for Multivalent Recognition

Fully substituted peptide/[60]fullerene hexakis‐adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis‐adducts display multiple copies of a peptide in close spatial proximity and in the three dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-10, Vol.134 (41), p.n/a
Hauptverfasser: Gallego, Iván, Ramos‐Soriano, Javier, Méndez‐Ardoy, Alejandro, Cabrera‐González, Justo, Lostalé‐Seijo, Irene, Illescas, Beatriz M., Reina, Jose J., Martín, Nazario, Montenegro, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fully substituted peptide/[60]fullerene hexakis‐adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis‐adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis‐adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E‐selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials. Multivalent ligand presentation is a powerful strategy for the development of specific binders and inhibitors. Peptide/[60]fullerene hybrids have now been synthesized that exploit the complete substitution of the fullerene scaffold to afford globular structures presenting twelve copies of a peptide ligand for the recognition of E‐selectin.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202210043