Polynomial identities in Novikov algebras

In this paper, we study Novikov algebras satisfying nontrivial identities. We show that a Novikov algebra over a field of zero characteristic that satisfies a nontrivial identity satisfies some unexpected "universal" identities, in particular, right associator nilpotence, and right nilpote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-01
Hauptverfasser: Dotsenko, Vladimir, Ismailov, Nurlan, Umirbaev, Ualbai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study Novikov algebras satisfying nontrivial identities. We show that a Novikov algebra over a field of zero characteristic that satisfies a nontrivial identity satisfies some unexpected "universal" identities, in particular, right associator nilpotence, and right nilpotence of the commutator ideal. This, in particular, implies that a Novikov algebra over a field of zero characteristic satisfies a nontrivial identity if and only if it is Lie-solvable. We also establish that any system of identities of Novikov algebras over a field of zero characteristic follows from finitely many of them, and that the same holds over any field for multilinear Novikov identities. Some analogous simpler statements are also proved for commutative differential algebras.
ISSN:2331-8422