Process-guidance improves predictive performance of neural networks for carbon turnover in ecosystems
Despite deep-learning being state-of-the-art for data-driven model predictions, it has not yet found frequent application in ecology. Given the low sample size typical in many environmental research fields, the default choice for the modelling of ecosystems and its functions remain process-based mod...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite deep-learning being state-of-the-art for data-driven model predictions, it has not yet found frequent application in ecology. Given the low sample size typical in many environmental research fields, the default choice for the modelling of ecosystems and its functions remain process-based models. The process understanding coded in these models complements the sparse data and neural networks can detect hidden dynamics even in noisy data. Embedding the process model in the neural network adds information to learn from, improving interpretability and predictive performance of the combined model towards the data-only neural networks and the mechanism-only process model. At the example of carbon fluxes in forest ecosystems, we compare different approaches of guiding a neural network towards process model theory. Evaluation of the results under four classical prediction scenarios supports decision-making on the appropriate choice of a process-guided neural network. |
---|---|
ISSN: | 2331-8422 |