Coherent quantum state transfer in ultra-cold chemistry
Creation and manipulation of cold molecules from atomic Bose–Einstein condensate has opened up a new dimension to study chemical reactions at ultra-cold temperature, known as ‘superchemistry,’ which is extremely useful for the quantum control of matter wave reaction at ultra-cold temperature. Here,...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2022-09, Vol.76 (9), Article 174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Creation and manipulation of cold molecules from atomic Bose–Einstein condensate has opened up a new dimension to study chemical reactions at ultra-cold temperature, known as ‘superchemistry,’ which is extremely useful for the quantum control of matter wave reaction at ultra-cold temperature. Here, a coherent quantum state transfer of atomic to molecular condensate is demonstrated, mediated by solitonic excitation in the mean-field geometry. It is observed that the induced photoassociation is found to control the velocity of these excitations, which in turn controls the chemical reaction fronts. Cooperative many-body effects of photoassociation on Lieb mode have also been studied through molecular dispersion, revealing degeneracy and bistable behavior. Furthermore, it is observed that the photoassociation-induced molecular energy shows oscillatory behavior, analogous to the classical reaction process.
Graphical abstract |
---|---|
ISSN: | 1434-6060 1434-6079 |
DOI: | 10.1140/epjd/s10053-022-00503-6 |