Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search

In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2022-10, Vol.195 (1), p.205-225
Hauptverfasser: Briceño-Arias, Luis M., Roldán, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 1
container_start_page 205
container_title Journal of optimization theory and applications
container_volume 195
creator Briceño-Arias, Luis M.
Roldán, Fernando
description In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.
doi_str_mv 10.1007/s10957-022-02074-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718753295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718753295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBHko2PpaItUqUeChculuvabUqaBDul4sY_8Id8CS6pxI3DvrQzs9pB6JrRW0Yp3AVGZQqEch6DQkLECeqxFAThOeSnqEcPK8GFPEcXIWwopTKHpIdeRvXOk1ljvW5rj-dNWbRtUa3we6GxxqPa77Vffn9-3WvzemwnunTkuMGDclX7ol1v8T5mPC0qi-dWe7O-RGdOl8FeHWsfPY8enoYTMp2NH4eDKTGCJS1xzuaJFABL4DbjC86T1JmEmmwhtJFUAncmBSmEBTCZBpbFwS6Zo7k2ZiH66KbTbXz9trOhVZv4UxVPKg4sh1RwmUYU71DG1yF461Tji632H4pRdfBQdR6qaJT69VCJSBIdKURwtbL-T_of1g8eFXYi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718753295</pqid></control><display><type>article</type><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><source>Springer Nature - Complete Springer Journals</source><creator>Briceño-Arias, Luis M. ; Roldán, Fernando</creator><creatorcontrib>Briceño-Arias, Luis M. ; Roldán, Fernando</creatorcontrib><description>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-022-02074-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational geometry ; Convex analysis ; Convexity ; Engineering ; Game theory ; Hilbert space ; Hypotheses ; Inclusions ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Operators (mathematics) ; Optimization ; Partial differential equations ; Searching ; Splitting ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2022-10, Vol.195 (1), p.205-225</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</cites><orcidid>0000-0001-6768-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-022-02074-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-022-02074-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Briceño-Arias, Luis M.</creatorcontrib><creatorcontrib>Roldán, Fernando</creatorcontrib><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Game theory</subject><subject>Hilbert space</subject><subject>Hypotheses</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Searching</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBHko2PpaItUqUeChculuvabUqaBDul4sY_8Id8CS6pxI3DvrQzs9pB6JrRW0Yp3AVGZQqEch6DQkLECeqxFAThOeSnqEcPK8GFPEcXIWwopTKHpIdeRvXOk1ljvW5rj-dNWbRtUa3we6GxxqPa77Vffn9-3WvzemwnunTkuMGDclX7ol1v8T5mPC0qi-dWe7O-RGdOl8FeHWsfPY8enoYTMp2NH4eDKTGCJS1xzuaJFABL4DbjC86T1JmEmmwhtJFUAncmBSmEBTCZBpbFwS6Zo7k2ZiH66KbTbXz9trOhVZv4UxVPKg4sh1RwmUYU71DG1yF461Tji632H4pRdfBQdR6qaJT69VCJSBIdKURwtbL-T_of1g8eFXYi</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Briceño-Arias, Luis M.</creator><creator>Roldán, Fernando</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6768-9015</orcidid></search><sort><creationdate>20221001</creationdate><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><author>Briceño-Arias, Luis M. ; Roldán, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Game theory</topic><topic>Hilbert space</topic><topic>Hypotheses</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Searching</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briceño-Arias, Luis M.</creatorcontrib><creatorcontrib>Roldán, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briceño-Arias, Luis M.</au><au>Roldán, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>195</volume><issue>1</issue><spage>205</spage><epage>225</epage><pages>205-225</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-022-02074-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6768-9015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2022-10, Vol.195 (1), p.205-225
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_2718753295
source Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Computational geometry
Convex analysis
Convexity
Engineering
Game theory
Hilbert space
Hypotheses
Inclusions
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Operators (mathematics)
Optimization
Partial differential equations
Searching
Splitting
Theory of Computation
title Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-Operator%20Splitting%20via%20a%20Forward%E2%80%93Backward%E2%80%93Half-Forward%20Algorithm%20with%20Line%20Search&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Brice%C3%B1o-Arias,%20Luis%20M.&rft.date=2022-10-01&rft.volume=195&rft.issue=1&rft.spage=205&rft.epage=225&rft.pages=205-225&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-022-02074-3&rft_dat=%3Cproquest_cross%3E2718753295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718753295&rft_id=info:pmid/&rfr_iscdi=true