Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search
In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-10, Vol.195 (1), p.205-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Journal of optimization theory and applications |
container_volume | 195 |
creator | Briceño-Arias, Luis M. Roldán, Fernando |
description | In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature. |
doi_str_mv | 10.1007/s10957-022-02074-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718753295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718753295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBHko2PpaItUqUeChculuvabUqaBDul4sY_8Id8CS6pxI3DvrQzs9pB6JrRW0Yp3AVGZQqEch6DQkLECeqxFAThOeSnqEcPK8GFPEcXIWwopTKHpIdeRvXOk1ljvW5rj-dNWbRtUa3we6GxxqPa77Vffn9-3WvzemwnunTkuMGDclX7ol1v8T5mPC0qi-dWe7O-RGdOl8FeHWsfPY8enoYTMp2NH4eDKTGCJS1xzuaJFABL4DbjC86T1JmEmmwhtJFUAncmBSmEBTCZBpbFwS6Zo7k2ZiH66KbTbXz9trOhVZv4UxVPKg4sh1RwmUYU71DG1yF461Tji632H4pRdfBQdR6qaJT69VCJSBIdKURwtbL-T_of1g8eFXYi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718753295</pqid></control><display><type>article</type><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><source>Springer Nature - Complete Springer Journals</source><creator>Briceño-Arias, Luis M. ; Roldán, Fernando</creator><creatorcontrib>Briceño-Arias, Luis M. ; Roldán, Fernando</creatorcontrib><description>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-022-02074-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational geometry ; Convex analysis ; Convexity ; Engineering ; Game theory ; Hilbert space ; Hypotheses ; Inclusions ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Operators (mathematics) ; Optimization ; Partial differential equations ; Searching ; Splitting ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2022-10, Vol.195 (1), p.205-225</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</cites><orcidid>0000-0001-6768-9015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-022-02074-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-022-02074-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Briceño-Arias, Luis M.</creatorcontrib><creatorcontrib>Roldán, Fernando</creatorcontrib><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational geometry</subject><subject>Convex analysis</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Game theory</subject><subject>Hilbert space</subject><subject>Hypotheses</subject><subject>Inclusions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Searching</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2eBHko2PpaItUqUeChculuvabUqaBDul4sY_8Id8CS6pxI3DvrQzs9pB6JrRW0Yp3AVGZQqEch6DQkLECeqxFAThOeSnqEcPK8GFPEcXIWwopTKHpIdeRvXOk1ljvW5rj-dNWbRtUa3we6GxxqPa77Vffn9-3WvzemwnunTkuMGDclX7ol1v8T5mPC0qi-dWe7O-RGdOl8FeHWsfPY8enoYTMp2NH4eDKTGCJS1xzuaJFABL4DbjC86T1JmEmmwhtJFUAncmBSmEBTCZBpbFwS6Zo7k2ZiH66KbTbXz9trOhVZv4UxVPKg4sh1RwmUYU71DG1yF461Tji632H4pRdfBQdR6qaJT69VCJSBIdKURwtbL-T_of1g8eFXYi</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Briceño-Arias, Luis M.</creator><creator>Roldán, Fernando</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6768-9015</orcidid></search><sort><creationdate>20221001</creationdate><title>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</title><author>Briceño-Arias, Luis M. ; Roldán, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ffe849377d72e62b2245fc40c6b3ac90972fc57933e77c6a716793ed1f08accb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational geometry</topic><topic>Convex analysis</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Game theory</topic><topic>Hilbert space</topic><topic>Hypotheses</topic><topic>Inclusions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Searching</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briceño-Arias, Luis M.</creatorcontrib><creatorcontrib>Roldán, Fernando</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briceño-Arias, Luis M.</au><au>Roldán, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>195</volume><issue>1</issue><spage>205</spage><epage>225</epage><pages>205-225</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-022-02074-3</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-6768-9015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2022-10, Vol.195 (1), p.205-225 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2718753295 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational geometry Convex analysis Convexity Engineering Game theory Hilbert space Hypotheses Inclusions Mathematics Mathematics and Statistics Methods Operations Research/Decision Theory Operators (mathematics) Optimization Partial differential equations Searching Splitting Theory of Computation |
title | Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-Operator%20Splitting%20via%20a%20Forward%E2%80%93Backward%E2%80%93Half-Forward%20Algorithm%20with%20Line%20Search&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Brice%C3%B1o-Arias,%20Luis%20M.&rft.date=2022-10-01&rft.volume=195&rft.issue=1&rft.spage=205&rft.epage=225&rft.pages=205-225&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-022-02074-3&rft_dat=%3Cproquest_cross%3E2718753295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718753295&rft_id=info:pmid/&rfr_iscdi=true |