Four-Operator Splitting via a Forward–Backward–Half-Forward Algorithm with Line Search

In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2022-10, Vol.195 (1), p.205-225
Hauptverfasser: Briceño-Arias, Luis M., Roldán, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we provide a splitting method for solving monotone inclusions in a real Hilbert space involving four operators: a maximally monotone, a monotone-Lipschitzian, a cocoercive, and a monotone-continuous operator. The proposed method takes advantage of the intrinsic properties of each operator, generalizing the forward–backward–half-forward splitting and the Tseng’s algorithm with line search. At each iteration, our algorithm defines the step size by using a line search in which the monotone-Lipschitzian and the cocoercive operators need only one activation. We also derive a method for solving nonlinearly constrained composite convex optimization problems in real Hilbert spaces. Finally, we implement our algorithm in a nonlinearly constrained least-square problem and we compare its performance with available methods in the literature.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-022-02074-3