High order approximations of the Cox-Ingersoll-Ross process semigroup using random grids

We present new high order approximations schemes for the Cox-Ingersoll-Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-04
Hauptverfasser: Alfonsi, Aurélien, Lombardo, Edoardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present new high order approximations schemes for the Cox-Ingersoll-Ross (CIR) process that are obtained by using a recent technique developed by Alfonsi and Bally (2021) for the approximation of semigroups. The idea consists in using a suitable combination of discretization schemes calculated on different random grids to increase the order of convergence. This technique coupled with the second order scheme proposed by Alfonsi (2010) for the CIR leads to weak approximations of order \(2k\), for all \(k\in\mathbb{N}^*\). Despite the singularity of the square-root volatility coefficient, we show rigorously this order of convergence under some restrictions on the volatility parameters. We illustrate numerically the convergence of these approximations for the CIR process and for the Heston stochastic volatility model and show the computational time gain they give.
ISSN:2331-8422