On Topological Classification of Regular Denjoy Type Homeomorphisms

We consider regular Denjoy type homeomorphisms of the two-dimensional torus which are the most natural generalization of Denjoy homeomorphisms of the circle. In particular, they arise as Poincaré maps induced on global cross sections by leaves of one-dimensional orientable unstable foliations of som...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2022-08, Vol.106 (1), p.268-271
Hauptverfasser: Grines, V. Z., Mints, D. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider regular Denjoy type homeomorphisms of the two-dimensional torus which are the most natural generalization of Denjoy homeomorphisms of the circle. In particular, they arise as Poincaré maps induced on global cross sections by leaves of one-dimensional orientable unstable foliations of some partially hyperbolic diffeomorphisms of closed three-dimensional manifolds. The nonwandering set of each regular Denjoy type homeomorphism is a Sierpiński set, and each such homeomorphism is, by definition, semiconjugate to the minimal translation on the two-dimensional torus. For regular Denjoy type homeomorphisms, we introduce a complete invariant of topological conjugacy characterized by the minimal translation, which is semiconjugate to the given regular Denjoy type homeomorphism, with a distinguished at most countable set of orbits.
ISSN:1064-5624
1531-8362
DOI:10.1134/S106456242204010X