A Conjecture of Zhi-Wei Sun on Determinants Over Finite Fields

In this paper, we study certain determinants over finite fields. Let F q be the finite field of q elements with q an odd prime power and q ≡ 2 ( mod 3 ) . Let a 1 , a 2 , ⋯ , a q - 1 be all nonzero elements of F q and let T q = 1 a i 2 - a i a j + a j 2 1 ≤ i , j ≤ q - 1 be a matrix over F q . We ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2022-09, Vol.45 (5), p.2405-2412
Hauptverfasser: Wu, Hai-Liang, She, Yue-Feng, Ni, He-Xia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study certain determinants over finite fields. Let F q be the finite field of q elements with q an odd prime power and q ≡ 2 ( mod 3 ) . Let a 1 , a 2 , ⋯ , a q - 1 be all nonzero elements of F q and let T q = 1 a i 2 - a i a j + a j 2 1 ≤ i , j ≤ q - 1 be a matrix over F q . We obtain the explicit value of det ( T q ) . Also, as a consequence of our result, we confirm a conjecture posed by Zhi-Wei Sun.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-022-01357-2