A Conjecture of Zhi-Wei Sun on Determinants Over Finite Fields
In this paper, we study certain determinants over finite fields. Let F q be the finite field of q elements with q an odd prime power and q ≡ 2 ( mod 3 ) . Let a 1 , a 2 , ⋯ , a q - 1 be all nonzero elements of F q and let T q = 1 a i 2 - a i a j + a j 2 1 ≤ i , j ≤ q - 1 be a matrix over F q . We ob...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2022-09, Vol.45 (5), p.2405-2412 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study certain determinants over finite fields. Let
F
q
be the finite field of
q
elements with
q
an odd prime power and
q
≡
2
(
mod
3
)
. Let
a
1
,
a
2
,
⋯
,
a
q
-
1
be all nonzero elements of
F
q
and let
T
q
=
1
a
i
2
-
a
i
a
j
+
a
j
2
1
≤
i
,
j
≤
q
-
1
be a matrix over
F
q
. We obtain the explicit value of
det
(
T
q
)
. Also, as a consequence of our result, we confirm a conjecture posed by Zhi-Wei Sun. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-022-01357-2 |