A New Conformal Invariant for four-Dimensional Hypersurfaces
A new conformally invariant energy for four-dimensional hypersurfaces is devised. It renders possible the study of a large class of curvature energies, and we show that their critical points are smooth. As corollaries, we obtain the regularity of the critical points of the four-dimensional analogues...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new conformally invariant energy for four-dimensional hypersurfaces is devised. It renders possible the study of a large class of curvature energies, and we show that their critical points are smooth. As corollaries, we obtain the regularity of the critical points of the four-dimensional analogues of the Willmore energy, of the \(Q\)-curvature energy, but also that Bach-flat hypersurfaces are smooth, along with relevant estimates. |
---|---|
ISSN: | 2331-8422 |