Moduli of \(G\)-constellations and crepant resolutions II: the Craw-Ishii conjecture

For any given finite subgroup \(G\subset SL_3(\mathbb{C})\), we show that every projective crepant resolution \(X\) of the quotient variety \(\mathbb{C}^3/G\) is isomorphic to the moduli space of \(\theta\)-stable \(G\)-constellations for a generic stability condition \(\theta\), as conjectured by C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
1. Verfasser: Yamagishi, Ryo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any given finite subgroup \(G\subset SL_3(\mathbb{C})\), we show that every projective crepant resolution \(X\) of the quotient variety \(\mathbb{C}^3/G\) is isomorphic to the moduli space of \(\theta\)-stable \(G\)-constellations for a generic stability condition \(\theta\), as conjectured by Craw and Ishii. We also show that generators of the Cox ring of \(X\) can be obtained from semi-invariants for representations of the McKay quiver of \(G\).
ISSN:2331-8422