Moduli of \(G\)-constellations and crepant resolutions II: the Craw-Ishii conjecture
For any given finite subgroup \(G\subset SL_3(\mathbb{C})\), we show that every projective crepant resolution \(X\) of the quotient variety \(\mathbb{C}^3/G\) is isomorphic to the moduli space of \(\theta\)-stable \(G\)-constellations for a generic stability condition \(\theta\), as conjectured by C...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any given finite subgroup \(G\subset SL_3(\mathbb{C})\), we show that every projective crepant resolution \(X\) of the quotient variety \(\mathbb{C}^3/G\) is isomorphic to the moduli space of \(\theta\)-stable \(G\)-constellations for a generic stability condition \(\theta\), as conjectured by Craw and Ishii. We also show that generators of the Cox ring of \(X\) can be obtained from semi-invariants for representations of the McKay quiver of \(G\). |
---|---|
ISSN: | 2331-8422 |