On some classification of finite-dimensional Hopf algebras over the Hopf algebra \(H_{b:1}^\) of Kashina
Let \(H\) be the dual of \(16\)-dimensional nontrivial semisimple Hopf algebra \(H_{b:1}\) in the classification work of Kashina \cite{K00}. We completely determine all finite-dimensional Nichols algebras satisfying \(\mathcal{B}(N)\cong \bigotimes_{i\in I}\mathcal{B}(N_i)\), where \(N=\bigoplus_{i\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(H\) be the dual of \(16\)-dimensional nontrivial semisimple Hopf algebra \(H_{b:1}\) in the classification work of Kashina \cite{K00}. We completely determine all finite-dimensional Nichols algebras satisfying \(\mathcal{B}(N)\cong \bigotimes_{i\in I}\mathcal{B}(N_i)\), where \(N=\bigoplus_{i\in I}N_i\), each \(N_i\) is a simple object in \(_H^H\mathcal{YD}\). Under this assumption, we classify all those Hopf algebras of finite-dimensional growth from the semisimple Hopf algebra \(H\) via the relevant Nichols algebras \(\mathcal B(N)\). |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2209.12470 |