Multilevel simulation of hard-sphere mixtures
We present a multilevel Monte Carlo simulation method for analyzing multi-scale physical systems via a hierarchy of coarse-grained representations, to obtain numerically exact results, at the most detailed level. We apply the method to a mixture of size-asymmetric hard spheres, in the grand canonica...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-09, Vol.157 (12), p.124109-124109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a multilevel Monte Carlo simulation method for analyzing multi-scale physical systems via a hierarchy of coarse-grained representations, to obtain numerically exact results, at the most detailed level. We apply the method to a mixture of size-asymmetric hard spheres, in the grand canonical ensemble. A three-level version of the method is compared with a previously studied two-level version. The extra level interpolates between the full mixture and a coarse-grained description where only the large particles are present—this is achieved by restricting the small particles to regions close to the large ones. The three-level method improves the performance of the estimator, at fixed computational cost. We analyze the asymptotic variance of the estimator and discuss the mechanisms for the improved performance. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0102875 |