Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth
Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2022-09, Vol.35 (3), p.1898-1938 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1938 |
---|---|
container_issue | 3 |
container_start_page | 1898 |
container_title | Journal of theoretical probability |
container_volume | 35 |
creator | Namba, Ryuya |
description | Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks. |
doi_str_mv | 10.1007/s10959-021-01111-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718226276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718226276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-NtkcZalVKCjix0lCuknardtkTbbW_nu3ruDNuQzMvO87zAPAOUaXGCFxlTCSucwQwRnCfWXiAIxwLkgmCUWHYIQKyTJZMHQMTlJaIYSkRGgE3iZmYbchdks4-Wq1T3XwCboQYWl9Z6M18FF7E9bwVTfvCQYPy_BpY-0XcBp1u-xHDj6EZufDutYNfAnNZm37Xdh2y1Nw5HST7NlvH4Pnm8lTeZvN7qd35fUsqyjlXcZyWVnMJaamslrQwnDn5swaWlgmDddsTlnOOHYVL4hzQnMnsHHWIM4oJ3QMLobcNoaPjU2dWoVN9P1JRQQuCOFE8F5FBlUVQ0rROtXGeq3jTmGk9hjVgFH1GNUPRiV6Ex1Mqd0_beNf9D-ubyfvdfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718226276</pqid></control><display><type>article</type><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><source>Springer Nature - Complete Springer Journals</source><creator>Namba, Ryuya</creator><creatorcontrib>Namba, Ryuya</creatorcontrib><description>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-021-01111-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Graphs ; Lie groups ; Mathematics ; Mathematics and Statistics ; Polynomials ; Probability Theory and Stochastic Processes ; Random walk ; Statistics ; Thermal expansion</subject><ispartof>Journal of theoretical probability, 2022-09, Vol.35 (3), p.1898-1938</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-021-01111-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-021-01111-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Namba, Ryuya</creatorcontrib><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</description><subject>Graphs</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random walk</subject><subject>Statistics</subject><subject>Thermal expansion</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-NtkcZalVKCjix0lCuknardtkTbbW_nu3ruDNuQzMvO87zAPAOUaXGCFxlTCSucwQwRnCfWXiAIxwLkgmCUWHYIQKyTJZMHQMTlJaIYSkRGgE3iZmYbchdks4-Wq1T3XwCboQYWl9Z6M18FF7E9bwVTfvCQYPy_BpY-0XcBp1u-xHDj6EZufDutYNfAnNZm37Xdh2y1Nw5HST7NlvH4Pnm8lTeZvN7qd35fUsqyjlXcZyWVnMJaamslrQwnDn5swaWlgmDddsTlnOOHYVL4hzQnMnsHHWIM4oJ3QMLobcNoaPjU2dWoVN9P1JRQQuCOFE8F5FBlUVQ0rROtXGeq3jTmGk9hjVgFH1GNUPRiV6Ex1Mqd0_beNf9D-ubyfvdfk</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Namba, Ryuya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><author>Namba, Ryuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphs</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random walk</topic><topic>Statistics</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namba, Ryuya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namba, Ryuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1898</spage><epage>1938</epage><pages>1898-1938</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-021-01111-7</doi><tpages>41</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-9840 |
ispartof | Journal of theoretical probability, 2022-09, Vol.35 (3), p.1898-1938 |
issn | 0894-9840 1572-9230 |
language | eng |
recordid | cdi_proquest_journals_2718226276 |
source | Springer Nature - Complete Springer Journals |
subjects | Graphs Lie groups Mathematics Mathematics and Statistics Polynomials Probability Theory and Stochastic Processes Random walk Statistics Thermal expansion |
title | Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edgeworth%20Expansions%20for%20Centered%20Random%20Walks%20on%20Covering%20Graphs%20of%20Polynomial%20Volume%20Growth&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Namba,%20Ryuya&rft.date=2022-09-01&rft.volume=35&rft.issue=3&rft.spage=1898&rft.epage=1938&rft.pages=1898-1938&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-021-01111-7&rft_dat=%3Cproquest_cross%3E2718226276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718226276&rft_id=info:pmid/&rfr_iscdi=true |