Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth

Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-09, Vol.35 (3), p.1898-1938
1. Verfasser: Namba, Ryuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1938
container_issue 3
container_start_page 1898
container_title Journal of theoretical probability
container_volume 35
creator Namba, Ryuya
description Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.
doi_str_mv 10.1007/s10959-021-01111-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718226276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718226276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-NtkcZalVKCjix0lCuknardtkTbbW_nu3ruDNuQzMvO87zAPAOUaXGCFxlTCSucwQwRnCfWXiAIxwLkgmCUWHYIQKyTJZMHQMTlJaIYSkRGgE3iZmYbchdks4-Wq1T3XwCboQYWl9Z6M18FF7E9bwVTfvCQYPy_BpY-0XcBp1u-xHDj6EZufDutYNfAnNZm37Xdh2y1Nw5HST7NlvH4Pnm8lTeZvN7qd35fUsqyjlXcZyWVnMJaamslrQwnDn5swaWlgmDddsTlnOOHYVL4hzQnMnsHHWIM4oJ3QMLobcNoaPjU2dWoVN9P1JRQQuCOFE8F5FBlUVQ0rROtXGeq3jTmGk9hjVgFH1GNUPRiV6Ex1Mqd0_beNf9D-ubyfvdfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718226276</pqid></control><display><type>article</type><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><source>Springer Nature - Complete Springer Journals</source><creator>Namba, Ryuya</creator><creatorcontrib>Namba, Ryuya</creatorcontrib><description>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</description><identifier>ISSN: 0894-9840</identifier><identifier>EISSN: 1572-9230</identifier><identifier>DOI: 10.1007/s10959-021-01111-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Graphs ; Lie groups ; Mathematics ; Mathematics and Statistics ; Polynomials ; Probability Theory and Stochastic Processes ; Random walk ; Statistics ; Thermal expansion</subject><ispartof>Journal of theoretical probability, 2022-09, Vol.35 (3), p.1898-1938</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10959-021-01111-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10959-021-01111-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27913,27914,41477,42546,51308</link.rule.ids></links><search><creatorcontrib>Namba, Ryuya</creatorcontrib><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><title>Journal of theoretical probability</title><addtitle>J Theor Probab</addtitle><description>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</description><subject>Graphs</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Random walk</subject><subject>Statistics</subject><subject>Thermal expansion</subject><issn>0894-9840</issn><issn>1572-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA82q-NtkcZalVKCjix0lCuknardtkTbbW_nu3ruDNuQzMvO87zAPAOUaXGCFxlTCSucwQwRnCfWXiAIxwLkgmCUWHYIQKyTJZMHQMTlJaIYSkRGgE3iZmYbchdks4-Wq1T3XwCboQYWl9Z6M18FF7E9bwVTfvCQYPy_BpY-0XcBp1u-xHDj6EZufDutYNfAnNZm37Xdh2y1Nw5HST7NlvH4Pnm8lTeZvN7qd35fUsqyjlXcZyWVnMJaamslrQwnDn5swaWlgmDddsTlnOOHYVL4hzQnMnsHHWIM4oJ3QMLobcNoaPjU2dWoVN9P1JRQQuCOFE8F5FBlUVQ0rROtXGeq3jTmGk9hjVgFH1GNUPRiV6Ex1Mqd0_beNf9D-ubyfvdfk</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Namba, Ryuya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220901</creationdate><title>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</title><author>Namba, Ryuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-459ce16913dcea738d6ffb4ed38e49d6a4b345461fc682ff7a6f71dfed0643623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graphs</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Random walk</topic><topic>Statistics</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namba, Ryuya</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of theoretical probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namba, Ryuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth</atitle><jtitle>Journal of theoretical probability</jtitle><stitle>J Theor Probab</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>35</volume><issue>3</issue><spage>1898</spage><epage>1938</epage><pages>1898-1938</pages><issn>0894-9840</issn><eissn>1572-9230</eissn><abstract>Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10959-021-01111-7</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-9840
ispartof Journal of theoretical probability, 2022-09, Vol.35 (3), p.1898-1938
issn 0894-9840
1572-9230
language eng
recordid cdi_proquest_journals_2718226276
source Springer Nature - Complete Springer Journals
subjects Graphs
Lie groups
Mathematics
Mathematics and Statistics
Polynomials
Probability Theory and Stochastic Processes
Random walk
Statistics
Thermal expansion
title Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edgeworth%20Expansions%20for%20Centered%20Random%20Walks%20on%20Covering%20Graphs%20of%20Polynomial%20Volume%20Growth&rft.jtitle=Journal%20of%20theoretical%20probability&rft.au=Namba,%20Ryuya&rft.date=2022-09-01&rft.volume=35&rft.issue=3&rft.spage=1898&rft.epage=1938&rft.pages=1898-1938&rft.issn=0894-9840&rft.eissn=1572-9230&rft_id=info:doi/10.1007/s10959-021-01111-7&rft_dat=%3Cproquest_cross%3E2718226276%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718226276&rft_id=info:pmid/&rfr_iscdi=true