Edgeworth Expansions for Centered Random Walks on Covering Graphs of Polynomial Volume Growth

Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-09, Vol.35 (3), p.1898-1938
1. Verfasser: Namba, Ryuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Edgeworth expansions for random walks on covering graphs with groups of polynomial volume growths are obtained under a few natural assumptions. The coefficients appearing in this expansion depend on not only geometric features of the underlying graphs but also the modified harmonic embedding of the graph into a certain nilpotent Lie group. Moreover, we apply the rate of convergence in Trotter’s approximation theorem to establish the Berry–Esseen-type bound for the random walks.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-021-01111-7