Convergence Towards the End Space for Random Walks on Schreier Graphs

We consider a transitive action of a finitely generated group G and the Schreier graph Γ defined by this action for some fixed generating set. For a probability measure μ on G with a finite first moment, we show that if the induced random walk is transient, it converges towards the space of ends of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2022-09, Vol.35 (3), p.1412-1422
1. Verfasser: Stankov, Bogdan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a transitive action of a finitely generated group G and the Schreier graph Γ defined by this action for some fixed generating set. For a probability measure μ on G with a finite first moment, we show that if the induced random walk is transient, it converges towards the space of ends of Γ . As a corollary, we obtain that for a probability measure with a finite first moment on Thompson’s group F , the support of which generates F as a semigroup, the induced random walk on the dyadic numbers has a non-trivial Poisson boundary. Some assumption on the moment of the measure is necessary as follows from an example by Juschenko and Zheng.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-021-01104-6