Numerical investigation on the compressor for gas-entraining diffuser EGR
Exhaust Gas Recirculation (EGR) is an effective way to reduce nitrogen oxide (NOx) emissions, and the EGR application increases the engine backpressure to some extent. In this paper, a new EGR method named gas-entraining diffuser EGR was proposed to reduce pumping loss. It introduces the exhaust gas...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2022-11, Vol.236 (13), p.2974-2990 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exhaust Gas Recirculation (EGR) is an effective way to reduce nitrogen oxide (NOx) emissions, and the EGR application increases the engine backpressure to some extent. In this paper, a new EGR method named gas-entraining diffuser EGR was proposed to reduce pumping loss. It introduces the exhaust gas into the compressor diffuser inlet where the static pressure is the lowest without blades fouled by exhaust gas. As a result, lower pressure at the turbine upstream can achieve EGR. Then, a newly designed induced structure not only introduces exhaust gas into the compressor diffuser but also reduces the energy loss caused by EGR application. Furthermore, the performance of compressor with different induced angles of the induced structure was investigated using simulation method. Results showed that the compressor’s adiabatic efficiency was the best when the induced angle was 20°. Regarding the induced angle of 20°, the adiabatic efficiency drop of compressor was in the range of 0.8%–12%. Approximately 10% of the adiabatic efficiency drop was caused by the induced structure, the other was mainly from the flow loss and mixing loss in diffuser system. The induced structure mainly affected the static pressure difference between induced structure inlet and impeller outlet (
Δ
P
s
). When the impeller mass flow was 0.23 kg/s,
Δ
P
s
was 11.21, 13.95, 15.59, 17.18 kPa respectively with corresponding induced angles of 20°, 30°, 40°, 50°. The primary energy loss leading to the adiabatic efficiency drop of compressor with induced structure occurred in diffuser system. It was caused by the mixing process of induced gas and impeller exit gas, and the enhanced effect from the shroud side’s impeller jet-wake and volute tongue. |
---|---|
ISSN: | 0954-4070 2041-2991 |
DOI: | 10.1177/09544070211064474 |