Modeling and analytical methods for a mounting system with double stage isolation

A calculation method for obtaining the displacements and rigid body modes of a Powertrain Mounting System (PMS) with double stage isolation is proposed in this paper. Firstly, the PMS with double stage isolation is modeled as a 12 Degree of Freedoms (DOFs) model, which includes six DOFs for the powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part D, Journal of automobile engineering Journal of automobile engineering, 2022-11, Vol.236 (13), p.3041-3059
Hauptverfasser: Zheng, Yawei, Shangguan, Wen-Bin, Kang, Yingzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A calculation method for obtaining the displacements and rigid body modes of a Powertrain Mounting System (PMS) with double stage isolation is proposed in this paper. Firstly, the PMS with double stage isolation is modeled as a 12 Degree of Freedoms (DOFs) model, which includes six DOFs for the powertrain and the subframe respectively. The mounts are simplified as a three-dimensional spring along each axis of its Local Mount Coordinate System (LMCS), which takes the non-linear relation of the force versus the displacement of each spring into account. Secondly, the quasi-static equilibrium equation and the free vibration equation as well as the forced vibration equation of the proposed model are derived and the solutions of equations are presented. Then, the calculation and solution methods are validated by the simulation results. The differences of rigid body modes and displacements of the powertrain between single and double stage isolation are estimated, which demonstrates that the proposed model is more accurate, especially when powertrain mounts are stiff. Also, the effect of locations for powertrain mounts on car body is investigated, which shows that is beneficial for motion control of powertrain.
ISSN:0954-4070
2041-2991
DOI:10.1177/09544070211063273