Ultraviolet photodissociation of Mg+–NO complex: Ion imaging of a reaction branching in the excited states
Ultraviolet photodissociation processes of gas phase Mg+–NO complex were studied by photofragment ion imaging experiments and theoretical calculations for excited electronic states. At 355 nm excitation, both Mg+ and NO+ photofragment ions were observed with positive anisotropy parameters, and theor...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-09, Vol.157 (12), p.124304-124304 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultraviolet photodissociation processes of gas phase Mg+–NO complex were studied by photofragment ion imaging experiments and theoretical calculations for excited electronic states. At 355 nm excitation, both Mg+ and NO+ photofragment ions were observed with positive anisotropy parameters, and theoretical calculations revealed that the two dissociation channels originate from an electronic transition from a bonding orbital consisting of Mg+ 3s and NO π* orbitals to an antibonding counterpart. For the NO+ channel, the photofragment image exhibited a high anisotropy (β = 1.53 ± 0.07), and a relatively large fraction (∼40%) of the available energy was partitioned into translational energy. These observations are rationalized by proposing a rapid dissociation process on a repulsive potential energy surface correlated to the Mg(1S) + NO+(1Σ) dissociation limit. In contrast, for the Mg+ channel, the angular distribution was more isotropic (β = 0.48 ± 0.03) and only ∼25% of the available energy was released into translational energy. The differences in the recoil distribution for these competing channels imply a reaction branching on the excited state surface. On the theoretical potential surface of the excited state, we found a deep well facilitating an isomerization from bent geometry in the Franck–Condon region to linear and/or T-shaped isomer. As a result, the Mg+ fragment was formed via the structural change followed by further relaxation to lower electronic states correlated to the Mg+(2S) + NO(2Π) exit channel. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0104744 |