Variable Hardy Spaces on Non-tangentially Accessible Domains and Their Applications to Div-Curl Lemma
Let n ≥ 2 , Ω ⊂ R n be a bounded non-tangentially accessible domain, and p ( · ) : R n → ( 0 , ∞ ) a variable exponent function satisfying 0 < p - ≤ p + < ∞ , where p - : = ess inf x ∈ R n p ( x ) and p + : = ess sup x ∈ R n p ( x ) . Assume that L D is a second order divergence form elliptic...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2022-12, Vol.32 (12), Article 305 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
n
≥
2
,
Ω
⊂
R
n
be a bounded non-tangentially accessible domain, and
p
(
·
)
:
R
n
→
(
0
,
∞
)
a variable exponent function satisfying
0
<
p
-
≤
p
+
<
∞
, where
p
-
:
=
ess
inf
x
∈
R
n
p
(
x
)
and
p
+
:
=
ess
sup
x
∈
R
n
p
(
x
)
. Assume that
L
D
is a second order divergence form elliptic operator having real-valued, bounded, and measurable coefficients on
L
2
(
Ω
)
with the Dirichlet boundary condition. The main aim of this article is threefold. First, the authors establish the molecular characterization for the variable Hardy space
H
L
D
p
(
·
)
(
Ω
)
associated with
L
D
. In particular, when
L
D
is non-negative and self-adjoint, the authors further obtain the atomic and the maximal function characterization of
H
L
D
p
(
·
)
(
Ω
)
. Secondly, the authors introduce the “geometrical” variable Hardy space
H
r
p
(
·
)
(
Ω
)
and its local version
h
r
p
(
·
)
(
Ω
)
by restricting any element of the variable Hardy space
H
p
(
·
)
(
R
n
)
and its local version
h
p
(
·
)
(
R
n
)
, respectively, to
Ω
, and then show that, when
p
-
∈
(
n
n
+
θ
,
1
]
,
H
p
(
·
)
(
Ω
)
=
H
r
p
(
·
)
(
Ω
)
=
H
L
D
p
(
·
)
(
Ω
)
=
h
r
p
(
·
)
(
Ω
)
with equivalent quasi-norms, where
H
p
(
·
)
(
Ω
)
denotes the variable Hardy space on
Ω
and
θ
∈
(
0
,
1
]
is the critical index of Hölder continuity for the heat kernels
{
p
t
,
L
D
}
t
>
0
generated by
L
D
. Thirdly, as applications, the authors prove the boundedness of the Riesz transform
∇
L
D
-
1
/
2
on the variable Lebesgue space
L
p
(
·
)
(
Ω
)
when
1
<
p
-
≤
p
+
≤
2
, and from
H
L
D
p
(
·
)
(
Ω
)
to
L
p
(
·
)
(
Ω
)
when
0
<
p
-
≤
p
+
≤
1
, or to
H
p
(
·
)
(
Ω
)
when
n
n
+
1
<
p
-
≤
p
+
≤
1
. Meanwhile, the authors also show the boundedness of the fractional integral
L
D
-
β
from
L
p
(
·
)
(
Ω
)
to
L
q
(
·
)
(
Ω
)
, when
1
<
p
(
·
)
<
q
(
·
)
<
∞
, and from
H
L
D
p
(
·
)
(
Ω
)
to
L
q
(
·
)
(
Ω
)
, when
0
<
p
(
·
)
≤
1
<
q
(
·
)
<
∞
, or to
H
L
D
q
(
·
)
(
Ω
)
, when
0
<
p
(
·
)
<
q
(
·
)
≤
1
, where
β
∈
(
0
,
n
2
)
and
1
p
(
·
)
-
1
q
(
·
)
=
2
β
n
. As a corollary, global gradient estimates, in both
L
p
(
·
)
(
Ω
)
when
1
<
p
-
≤
p
+
≤
2
and
H
p
(
·
)
(
Ω
)
when
n
n
+
1
<
p
-
≤
p
+
≤
1
, for the inhomogeneous Dirichlet problem of
L
D
on
Ω
are obtained. Finally, a div-curl lemma in the space
H
r
p
(
·
)
(
Ω
)
is established. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-022-01025-8 |