Adaptive neural network control of an uncertain 2-DOF helicopter system with input backlash and output constraints
This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects of input backlash nonlinearities and system uncertainties...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-10, Vol.34 (20), p.18143-18154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects of input backlash nonlinearities and system uncertainties. Subsequently, a barrier Lyapunov function is introduced to limit the output signals for further ensuring the safe operation of the system. The bounded stability of the closed-loop system is analyzed employing the direct Lyapunov approach. In the end, the simulation and experiment results are provided to demonstrate the validity and efficacy of the derived control. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-022-07463-3 |