Adaptive neural network control of an uncertain 2-DOF helicopter system with input backlash and output constraints

This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects of input backlash nonlinearities and system uncertainties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-10, Vol.34 (20), p.18143-18154
Hauptverfasser: Zhao, Zhijia, He, Weitian, Yang, Jingfeng, Li, ZhiFu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study considers an adaptive neural control for a two degrees of freedom helicopter nonlinear system preceded by system uncertainties, input backlash, and output constraints. First, a neural network is adopted to handle the hybrid effects of input backlash nonlinearities and system uncertainties. Subsequently, a barrier Lyapunov function is introduced to limit the output signals for further ensuring the safe operation of the system. The bounded stability of the closed-loop system is analyzed employing the direct Lyapunov approach. In the end, the simulation and experiment results are provided to demonstrate the validity and efficacy of the derived control.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-022-07463-3