Stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch
In this paper, stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch are investigated. The global uniform stability conditions of fractional-order generalized reaction–diffusion neural networks are derived. F...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-10, Vol.34 (20), p.17905-17920 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch are investigated. The global uniform stability conditions of fractional-order generalized reaction–diffusion neural networks are derived. Furthermore, considering parameter mismatch, the global synchronization conditions of fractional-order generalized reaction–diffusion neural networks with multiple time delays are given via the Lyapunov direct method. Finally, two numerical examples are presented to show the effectiveness of our theoretical results. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-022-07414-y |