Stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch

In this paper, stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch are investigated. The global uniform stability conditions of fractional-order generalized reaction–diffusion neural networks are derived. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-10, Vol.34 (20), p.17905-17920
Hauptverfasser: Gu, Yajuan, Wang, Hu, Yu, Yongguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, stability and synchronization of fractional-order generalized reaction–diffusion neural networks with multiple time delays and parameter mismatch are investigated. The global uniform stability conditions of fractional-order generalized reaction–diffusion neural networks are derived. Furthermore, considering parameter mismatch, the global synchronization conditions of fractional-order generalized reaction–diffusion neural networks with multiple time delays are given via the Lyapunov direct method. Finally, two numerical examples are presented to show the effectiveness of our theoretical results.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-022-07414-y