Classification of physiological disorders in apples fruit using a hybrid model based on convolutional neural network and machine learning methods

Physiological disorders in apples are due to post-harvest conditions. For this reason, automatic identification of physiological disorders is important in obtaining agricultural information. Image processing is one of the techniques that can help achieve the features of physiological disorders. Phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-10, Vol.34 (19), p.16973-16988
Hauptverfasser: Buyukarikan, Birkan, Ulker, Erkan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Physiological disorders in apples are due to post-harvest conditions. For this reason, automatic identification of physiological disorders is important in obtaining agricultural information. Image processing is one of the techniques that can help achieve the features of physiological disorders. Physiological disorders during image acquisition can be affected by the changes in brightness values created by different lighting conditions. This changes the results of the classification. In recent years, the convolutional neural network (CNN) has been a successful approach in automatically obtaining deep features from raw images in image classification problems. The study aims to classify physiological disorders using machine learning (ML) methods according to extracted deep features of the images under different lighting conditions. The data sets were created by acquired images (1080 images) and augmentation images (4320 images). Deep features were extracted using five popular pre-trained CNN models in these data sets, and these features were classified using five ML methods. The highest average accuracy was obtained with the VGG19(fc6) + SVM method in the data set-1 and data set-2 and were 96.11 and 96.09%, respectively. With this study, physiological disorders can be determined early, and needed precautions can be taken before and after harvest, not too late.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-022-07350-x