Investigating Drought Propagation Time, Relationship, and Drivers in Perennial River Basins of China

Drought is a multifaceted natural disaster that can impact the ecological environment, crop yield, and social economy through the hydrological cycle process. Meteorological drought occurs first, which then propagates to other forms. This study presents the propagation characteristics of meteorologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-09, Vol.14 (18), p.2812
Hauptverfasser: Li, Lusheng, Zhao, Lili, Ge, Jiankun, Yang, Peiwen, Wu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought is a multifaceted natural disaster that can impact the ecological environment, crop yield, and social economy through the hydrological cycle process. Meteorological drought occurs first, which then propagates to other forms. This study presents the propagation characteristics of meteorological to hydrological drought in different river basins of China. The main drivers of drought propagation are also quantitatively analyzed in this study. The standardized precipitation index (SPI) and standardized runoff index (SRI) were used to describe meteorological and hydrological drought, respectively. The Songhua and Liaohe River Basin (SLRB), Haihe River Basin (HARB), Huaihe River Basin (HURB), Yellow River Basin (YRB), Yangtze River Basin (YARB), Pearl River Basin (PRB), Southeast Basin (SEB), Southwest Basin (SWB), and Continental Basin (CB) were analyzed in this study. The precipitation and runoff datasets were used to compute the SPI and SRI, respectively. The results showed that the drought propagation time was mainly 1–3 months in China. In general, drought propagation had a stronger relationship in the central and eastern river basins of China than in the western river basins (SWB and CB). Spring and winter had a weaker drought propagation relationship than autumn and winter. Drought propagation was driven by precipitation in the HURB, YARB, SEB, and PRB; soil moisture and precipitation were drivers in the HARB and YRB; moreover, soil moisture and potential evapotranspiration were drivers in the SLRB and CB. This study improves the understanding of the characteristics and drivers of drought propagation in droughts in river basins. Therefore, this study might provide a reference to reveal the mechanism of drought.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14182812