Research on vibration reduction test and frame modal analysis of rice transplanter based on vibration evaluation

The chassis of rice transplanter tends to vibrate severely in the severe working environment, causing a severe effect on the operational performance and driving comfort. In order to avoid this situation, this paper constructs a vibration evaluation system of the rice transplanter and carries out exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of agricultural and biological engineering 2022-07, Vol.15 (4), p.116-122
Hauptverfasser: Jin, Xin, Cheng, Qun, Tang, Qing, Wu, Jun, Jiang, Lan, Wu, Chongyou, Wang, Huankun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chassis of rice transplanter tends to vibrate severely in the severe working environment, causing a severe effect on the operational performance and driving comfort. In order to avoid this situation, this paper constructs a vibration evaluation system of the rice transplanter and carries out experimental analysis. According to the optimal acceleration sensor placement scheme, a test platform system was designed. Taking the high-speed transplanter chassis as the research object, this study carried out the experiments modal analysis and optimization on the chassis. The three-dimensional model of the transplanting machine chassis established by SolidWorks was imported into ANSYS Workbench for finite element modal simulation analysis. Comparing the two modal analyses, it is found that the results data of the two analysis methods were very close. After optimization, the length xb the section width x2 and the thickness of the hollow beam x3 of the main load-bearing beam of the frame were as follows: Xļ=1641.5 mm, x2 =26.7 mm, x3=5 mm, respectively. The maximum overshoot of the low-level system was reduced by 28.57%. It has been verified that the vibration of the whole machine has been effectively reduced.
ISSN:1934-6344
1934-6352
DOI:10.25165/j.ijabe.20221504.7244