Passive probe particle in an active bath: can we tell it is out of equilibrium?

We study a passive probe immersed in a fluid of active particles. Despite the system's non-equilibrium nature, the trajectory of the probe does not exhibit non-equilibrium signatures: its velocity distribution remains Gaussian, the second fluctuation dissipation theorem is not fundamentally vio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2022-09, Vol.18 (36), p.6965-6973
Hauptverfasser: Shea, Jeanine, Jung, Gerhard, Schmid, Friederike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a passive probe immersed in a fluid of active particles. Despite the system's non-equilibrium nature, the trajectory of the probe does not exhibit non-equilibrium signatures: its velocity distribution remains Gaussian, the second fluctuation dissipation theorem is not fundamentally violated, and the motion does not indicate breaking of time reversal symmetry. To tell that the probe is out of equilibrium requires examination of its behavior in tandem with that of the active fluid: the kinetic temperature of the probe does not equilibrate to that of the surrounding active particles. As a strategy to diagnose non-equilibrium from probe trajectories alone, we propose to examine their response to a small perturbation which reveals a non-equilibrium signature through a violation of the first fluctuation dissipation theorem. The trajectory of a probe immersed in an active bath does not exhibit non-equilibrium signatures, despite its non-equilibrium nature. We propose one way to detect such a signature: to look for a violation of the first fluctuation dissipation theorem.
ISSN:1744-683X
1744-6848
DOI:10.1039/d2sm00905f