Power and Energy Applications Based on Quantum Computing: The Possible Potentials of Grover’s Algorithm
In quantum computing, calculations are achieved using quantum mechanics. Typically, two main phenomena of quantum mechanics (i.e., superposition and entanglement) allow quantum computing to solve some problems more efficiently than classical algorithms. The most well-known advantage of quantum compu...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-09, Vol.11 (18), p.2919 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In quantum computing, calculations are achieved using quantum mechanics. Typically, two main phenomena of quantum mechanics (i.e., superposition and entanglement) allow quantum computing to solve some problems more efficiently than classical algorithms. The most well-known advantage of quantum computing is the speedup of some of the calculations, which have been performed before by classical applications. Scientists and engineers are attempting to use quantum computing in different fields of science, e.g., drug discovery, chemistry, computer science, etc. However, there are few attempts to use quantum computing in power and energy applications. This paper tries to highlight this gap by discussing one of the most famous quantum computing algorithms (i.e., Grover’s algorithm) and discussing the potential applications of this algorithm in power and energy systems, which can serve as one of the starting points for using Grover’s algorithm in power and energy systems. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics11182919 |