Effect of Modified Alumina Support on the Performance of Ni-Based Catalysts for CO2 Reforming of Methane
The CO2 reforming of methane to syngas was examined over five different supported catalysts. In this study, 5% Ni was used as the active metal part of the catalyst. To better comprehend the impact of the supports on the catalytic properties, 5% Ni-based catalysts were characterized using nitrogen ad...
Gespeichert in:
Veröffentlicht in: | Catalysts 2022-09, Vol.12 (9), p.1066 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The CO2 reforming of methane to syngas was examined over five different supported catalysts. In this study, 5% Ni was used as the active metal part of the catalyst. To better comprehend the impact of the supports on the catalytic properties, 5% Ni-based catalysts were characterized using nitrogen adsorption–desorption isotherms, XRD, H2-TPR, CO2-TPD, TGA, TPO, FTIR, and Raman. The results showed that the catalyst support with the highest surface area provided the best catalytic activity. The acquired CH4 and CO2 conversions at 700 °C were 58.2% and 67.6%, respectively, with a hydrogen/carbon ratio of 0.85. The TGA investigation of the high-surface-area sample produced a minimum carbon deposition of 11.2 wt.%, and in the CO2-TPD investigation, the high-surface-area sample exhibited the absence of a peak in the strong-basic-sites zone. The formation of NiAl2O4 spinel, moderate basicity, and the high surface area explained the outperformance of the high-surface-area catalyst sample. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal12091066 |