A CNRZ-7 Based Wireline Transceiver With High-Bandwidth-Density, Low-Power for D2D Communication

A novel high-speed transceiver based on 7 bit correlated non-return-to-zero(CNRZ-7) with high-bandwidth-density(bandwidth per unit length) and low-power for Die-to-Die(D2D) communication is proposed. In order to further improve the SNR and the bandwidth of the CNRZ-5 in D2D communication, a CNRZ-7 b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.96556-96567
Hauptverfasser: Zhang, Geng, Lai, Mingche, Lyu, Fangxu, Zheng, Xuqiang, Wang, Heming, Lv, Dongbin, Xu, Chaolong, Qi, Xingyun, Liu, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel high-speed transceiver based on 7 bit correlated non-return-to-zero(CNRZ-7) with high-bandwidth-density(bandwidth per unit length) and low-power for Die-to-Die(D2D) communication is proposed. In order to further improve the SNR and the bandwidth of the CNRZ-5 in D2D communication, a CNRZ-7 based transmitter matrix and receiver matrix are proposed firstly, which are derived from Walsh Hadamard(W-H) transform and inverse transformation. In addition, to reduce the power consumption of the transmitter, the encoding driver based on CNRZ-7 transmitter matrix is designed with source series terminated drivers(SST). To further improve the SNR of the receiver, the decoding circuit based on CNRZ-7 receiver matrix is designed with a special multi-input comparators(MIC), which contain equalizer circuits. This transceiver is designed with a 28nm CMOS technology and the core area is 0.66mm2. The post-simulation results show that this transceiver can operate at 280 Gb/s, and the data rate is 35 Gb/s/wire. The worst width of the receiver's eye-diagrams is 0.45UI when the transceiver operates at a 50 mm PCB channel with a 10dB@20GHz insertion loss, and the total BER is less than 1E-15. The power consumption is 1.1pJ/b under a normal corner.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2022.3204744