Comparison of Various Estimation and Simulation Methods for Orebody Grade Variations Modeling
Estimation of iron ore grade distribution has been done using geostatistics and Artificial Neural Network (ANN) models for an iron ore body in Central Iran. The methods implemented include Ordinary Kriging (OK), Sequential Gaussian Simulation (SGS) and ANN. A comparison of the estimates from these t...
Gespeichert in:
Veröffentlicht in: | Journal of mining science 2022, Vol.58 (1), p.163-172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Estimation of iron ore grade distribution has been done using geostatistics and Artificial Neural Network (ANN) models for an iron ore body in Central Iran. The methods implemented include Ordinary Kriging (OK), Sequential Gaussian Simulation (SGS) and ANN. A comparison of the estimates from these techniques was done to investigate which method gives more accurate estimates |
---|---|
ISSN: | 1062-7391 1573-8736 |
DOI: | 10.1134/S1062739122010197 |