The isomorphism problem for tensor algebras of multivariable dynamical systems
We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In parti...
Gespeichert in:
Veröffentlicht in: | Forum of mathematics. Sigma 2022-01, Vol.10, Article e81 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson and Kakariadis, Inter. Math. Res. Not. 2014 (2014), 1289–1311 relating to work of Arveson, Acta Math. 118 (1967), 95–109 from the 1960s, and extends related work of Kakariadis and Katsoulis, J. Noncommut. Geom. 8 (2014), 771–787. |
---|---|
ISSN: | 2050-5094 2050-5094 |
DOI: | 10.1017/fms.2022.73 |