Estimates of eigenvalues of an elliptic differential system in divergence form
In this paper, we compute universal estimates of eigenvalues of a coupled system of elliptic differential equations in divergence form on a bounded domain in Euclidean space. As an application, we show an interesting case of rigidity inequalities of the eigenvalues of the Laplacian, more precisely,...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-10, Vol.73 (5), Article 210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we compute universal estimates of eigenvalues of a coupled system of elliptic differential equations in divergence form on a bounded domain in Euclidean space. As an application, we show an interesting case of rigidity inequalities of the eigenvalues of the Laplacian, more precisely, we consider a countable family of bounded domains in Gaussian shrinking soliton that makes the behavior of known estimates of the eigenvalues of the Laplacian invariant by a first-order perturbation of the Laplacian. We also address the Gaussian expanding soliton case in two different settings. We finish with the special case of divergence-free tensors which is closely related to the Cheng–Yau operator. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-022-01848-z |