Core reduction for singular Riemannian foliations and applications to positive curvature

We expand upon the notion of a pre-section for a singular Riemannian foliation ( M , F ) , i.e. a proper submanifold N ⊂ M retaining all the transverse geometry of the foliation. This generalization of a polar foliation provides a similar reduction, allowing one to recognize certain geometric or top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2022-10, Vol.62 (3), p.617-634
Hauptverfasser: Corro, Diego, Moreno, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We expand upon the notion of a pre-section for a singular Riemannian foliation ( M , F ) , i.e. a proper submanifold N ⊂ M retaining all the transverse geometry of the foliation. This generalization of a polar foliation provides a similar reduction, allowing one to recognize certain geometric or topological properties of ( M , F ) and the leaf space M / F . In particular, we show that if a foliated manifold M has positive sectional curvature and contains a non-trivial pre-section, then the leaf space M / F has nonempty boundary. We recover as corollaries the known result for the special case of polar foliations as well as the well-known analogue for isometric group actions.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-022-09856-y