Core reduction for singular Riemannian foliations and applications to positive curvature
We expand upon the notion of a pre-section for a singular Riemannian foliation ( M , F ) , i.e. a proper submanifold N ⊂ M retaining all the transverse geometry of the foliation. This generalization of a polar foliation provides a similar reduction, allowing one to recognize certain geometric or top...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2022-10, Vol.62 (3), p.617-634 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We expand upon the notion of a pre-section for a singular Riemannian foliation
(
M
,
F
)
, i.e. a proper submanifold
N
⊂
M
retaining all the transverse geometry of the foliation. This generalization of a polar foliation provides a similar reduction, allowing one to recognize certain geometric or topological properties of
(
M
,
F
)
and the leaf space
M
/
F
. In particular, we show that if a foliated manifold
M
has positive sectional curvature and contains a non-trivial pre-section, then the leaf space
M
/
F
has nonempty boundary. We recover as corollaries the known result for the special case of polar foliations as well as the well-known analogue for isometric group actions. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-022-09856-y |