Systematic Codes Correcting Multiple-Deletion and Multiple-Substitution Errors
We consider construction of deletion and substitution correcting codes with low redundancy and efficient encoding/ decoding. First, by simplifying the method of Sima et al . (ISIT 2020), we construct a family of binary single-deletion s -substitution correcting codes with redundancy (s+1) (2s+1)\l...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2022-10, Vol.68 (10), p.6402-6416 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider construction of deletion and substitution correcting codes with low redundancy and efficient encoding/ decoding. First, by simplifying the method of Sima et al . (ISIT 2020), we construct a family of binary single-deletion s -substitution correcting codes with redundancy (s+1) (2s+1)\log _{2} n+o(\log _{2} n) and encoding complexity O(n^{2}) , where n is the blocklength of the code and s\geq 1 . The construction can be viewed as a generalization of Smagloy et al .'s construction (ISIT 2020), and for the special case of s=1 , our construction is a slight improvement in redundancy of the existing works. Further, we modify the syndrome compression technique by combining a precoding process and construct a family of systematic t -deletion s -substitution correcting codes with polynomial time encoding/decoding algorithms for both binary and nonbinary alphabets, where t\geq 1 and s\geq 1 . Specifically, our binary t -deletion s -substitution correcting codes of length n have redundancy (4t+3s)\log _{2}n+o(\log _{2}n) , whereas, for q being a prime power, the redundancy of q -ary t -deletion s -substitution codes is asymptotically \ |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2022.3177169 |