On minimax robust testing of composite hypotheses on Poisson process intensity
The problem on the minimax testing of a Poisson process intensity is considered. For a given disjoint sets S T and V T of possible intensities s T and v T , respectively, the minimax testing of the composite hypothesis H 0 : s T ∈ S T against the composite alternative H 1 : v T ∈ V T is investigated...
Gespeichert in:
Veröffentlicht in: | Statistical inference for stochastic processes : an international journal devoted to time series analysis and the statistics of continuous time processes and dynamic systems 2022-10, Vol.25 (3), p.431-448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem on the minimax testing of a Poisson process intensity is considered. For a given disjoint sets
S
T
and
V
T
of possible intensities
s
T
and
v
T
, respectively, the minimax testing of the composite hypothesis
H
0
:
s
T
∈
S
T
against the composite alternative
H
1
:
v
T
∈
V
T
is investigated. It is assumed that a pair of intensities
s
T
0
∈
S
T
and
v
T
0
∈
V
T
are chosen, and the “Likelihood-Ratio” test for intensities
s
T
0
and
v
T
0
is used for testing composite hypotheses
H
0
and
H
1
. The case, when the 1-st kind error probability
α
is fixed and we are interested in the minimal possible 2-nd kind error probability
β
(
S
T
,
V
T
)
, is considered. What are the maximal sets
S
(
s
T
0
,
v
T
0
)
and
V
(
s
T
0
,
v
T
0
)
, which can be replaced by the pair of intensities
(
s
T
0
,
v
T
0
)
without essential loss for testing performance ? In the asymptotic case (
T
→
∞
) those maximal sets
S
(
s
T
0
,
v
T
0
)
and
V
(
s
T
0
,
v
T
0
)
are described. |
---|---|
ISSN: | 1387-0874 1572-9311 |
DOI: | 10.1007/s11203-021-09265-1 |