Achieving the Performance of All-bank In-DRAM PIM with Standard Memory Interface: Memory-Computation Decoupling
Processing-in-Memory (PIM) has been actively studied to overcome the memory bottleneck by placing computing units near or in memory, especially for efficiently processing low locality data-intensive applications. We can categorize the in-DRAM PIMs depending on how many banks perform the PIM computat...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Processing-in-Memory (PIM) has been actively studied to overcome the memory bottleneck by placing computing units near or in memory, especially for efficiently processing low locality data-intensive applications. We can categorize the in-DRAM PIMs depending on how many banks perform the PIM computation by one DRAM command: per-bank and all-bank. The per-bank PIM operates only one bank, delivering low performance but preserving the standard DRAM interface and servicing non-PIM requests during PIM execution. The all-bank PIM operates all banks, achieving high performance but accompanying design issues like thermal and power consumption. We introduce the memory-computation decoupling execution to achieve the ideal all-bank PIM performance while preserving the standard JEDEC DRAM interface, i.e., performing the per-bank execution, thus easily adapted to commercial platforms. We divide the PIM execution into two phases: memory and computation phases. At the memory phase, we read the bank-private operands from a bank and store them in PIM engines' registers bank-by-bank. At the computation phase, we decouple the PIM engine from the memory array and broadcast a bank-shared operand using a standard read/write command to make all banks perform the computation simultaneously, thus reaching the computing throughput of the all-bank PIM. For extending the computation phase, i.e., maximizing all-bank execution opportunity, we introduce a compiler analysis and code generation technique to identify the bank-private and the bank-shared operands. We compared the performance of Level-2/3 BLAS, multi-batch LSTM-based Seq2Seq model, and BERT on our decoupled PIM with commercial computing platforms. In Level-3 BLAS, we achieved speedups of 75.8x, 1.2x, and 4.7x compared to CPU, GPU, and the per-bank PIM and up to 91.4% of the ideal all-bank PIM performance. Furthermore, our decoupled PIM consumed less energy than GPU and the per-bank PIM by 72.0% and 78.4%, but 7.4%, a little more than the ideal all-bank PIM. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2022.3203051 |