The dynamics of a rigid inverted flag

An ‘inverted flag’ – a flexible plate clamped at its trailing edge – undergoes large-amplitude flow-induced flapping when immersed in a uniform and steady flow. Here, we report direct numerical simulations of a related single degree-of-freedom mechanical system: a rigid plate attached at its trailin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2022-10, Vol.948, Article A47
Hauptverfasser: Leontini, Justin S., Sader, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ‘inverted flag’ – a flexible plate clamped at its trailing edge – undergoes large-amplitude flow-induced flapping when immersed in a uniform and steady flow. Here, we report direct numerical simulations of a related single degree-of-freedom mechanical system: a rigid plate attached at its trailing edge to a torsional spring. This system is termed a ‘rigid inverted flag’ and exhibits the dynamical states reported for the (flexible) inverted flag, with additional behaviour. This finding shows that the flapping dynamics of inverted flags is not reliant on their continuous flexibility, i.e. many degrees of freedom. The rigid inverted flag exhibits additional, novel states including a heteroclinic-type orbit that results in small-amplitude flapping, and a number of chaotic large-amplitude flapping regimes. We show that the various routes to chaos are driven by a series of periodic states, including at least two which are subharmonic. The instability and competition between these periodic states lead to chaos via type-I intermittency, mode competition and mode locking. The rigid inverted flag allows these periodic states and their subsequent interaction to be explained simply: they arise from an interaction between a preferred vortex shedding frequency and a single natural frequency of the structure. The dynamics of rigid inverted flags is yet to be studied experimentally, and this numerical study provides impetus for such future work.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2022.718