Limiting Current Distribution for a Two Species Asymmetric Exclusion Process
We study current fluctuations of a two-species totally asymmetric exclusion process, known as the Arndt–Heinzel–Rittenberg model. For a step-Bernoulli initial condition with finite number of particles, we provide an explicit multiple integral expression for a certain joint current probability distri...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2022-10, Vol.395 (1), p.59-142 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study current fluctuations of a two-species totally asymmetric exclusion process, known as the Arndt–Heinzel–Rittenberg model. For a step-Bernoulli initial condition with finite number of particles, we provide an explicit multiple integral expression for a certain joint current probability distribution. By performing an asymptotic analysis we prove that the joint current distribution is given by a product of a Gaussian and a GUE Tracy–Widom distribution in the long time limit, as predicted by non-linear fluctuating hydrodynamics. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-022-04408-8 |