Syzygies of Cohen–Macaulay Modules over One Dimensional Cohen–Macaulay Local Rings
We study syzygies of (maximal) Cohen–Macaulay modules over one dimensional Cohen–Macaulay local rings. We assume that rings are generically Gorenstein. We compare these modules to Cohen–Macaulay modules over the endomorphism ring of the maximal ideal. After this comparison, we give several character...
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2022-10, Vol.25 (5), p.1061-1070 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study syzygies of (maximal) Cohen–Macaulay modules over one dimensional Cohen–Macaulay local rings. We assume that rings are generically Gorenstein. We compare these modules to Cohen–Macaulay modules over the endomorphism ring of the maximal ideal. After this comparison, we give several characterizations of almost Gorenstein rings in terms of syzygies of Cohen–Macaulay modules. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-021-10059-5 |