An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud
Stellar-mass black holes are the final remnants of stars born with more than 15 solar masses. Billions are expected to reside in the Local Group, yet only a few are known, mostly detected through X-rays emitted as they accrete material from a companion star. Here, we report on VFTS 243: a massive X-...
Gespeichert in:
Veröffentlicht in: | Nature astronomy 2022-09, Vol.6 (9), p.1085-1092 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stellar-mass black holes are the final remnants of stars born with more than 15 solar masses. Billions are expected to reside in the Local Group, yet only a few are known, mostly detected through X-rays emitted as they accrete material from a companion star. Here, we report on VFTS 243: a massive X-ray-faint binary in the Large Magellanic Cloud. With an orbital period of 10.4 d, it comprises an O-type star of 25 solar masses and an unseen companion of at least nine solar masses. Our spectral analysis excludes a non-degenerate companion at a 5
σ
confidence level. The minimum companion mass implies that it is a black hole. No other X-ray-quiet black hole is unambiguously known outside our Galaxy. The (near-)circular orbit and kinematics of VFTS 243 imply that the collapse of the progenitor into a black hole was associated with little or no ejected material or black-hole kick. Identifying such unique binaries substantially impacts the predicted rates of gravitational-wave detections and properties of core-collapse supernovae across the cosmos.
An inactive black hole has been found in the Large Magellanic Cloud, bound into a binary star system. Having experienced a negligible ‘kick’ during formation, the existence of this black hole has strong implications for black hole-–black hole mergers. |
---|---|
ISSN: | 2397-3366 2397-3366 |
DOI: | 10.1038/s41550-022-01730-y |