Pinned planar p-elasticae
Building on our previous work, we classify all planar \(p\)-elasticae under the pinned boundary condition, and then obtain uniqueness and geometric properties of global minimizers. As an application we establish a Li--Yau type inequality for the \(p\)-bending energy, and in particular discover a uni...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Building on our previous work, we classify all planar \(p\)-elasticae under the pinned boundary condition, and then obtain uniqueness and geometric properties of global minimizers. As an application we establish a Li--Yau type inequality for the \(p\)-bending energy, and in particular discover a unique exponent \(p \simeq 1.5728\) for full optimality. We also prove existence of minimal \(p\)-elastic networks, extending a recent result of Dall'Acqua--Novaga--Pluda. |
---|---|
ISSN: | 2331-8422 |