Pinned planar p-elasticae

Building on our previous work, we classify all planar \(p\)-elasticae under the pinned boundary condition, and then obtain uniqueness and geometric properties of global minimizers. As an application we establish a Li--Yau type inequality for the \(p\)-bending energy, and in particular discover a uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-06
Hauptverfasser: Miura, Tatsuya, Yoshizawa, Kensuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Building on our previous work, we classify all planar \(p\)-elasticae under the pinned boundary condition, and then obtain uniqueness and geometric properties of global minimizers. As an application we establish a Li--Yau type inequality for the \(p\)-bending energy, and in particular discover a unique exponent \(p \simeq 1.5728\) for full optimality. We also prove existence of minimal \(p\)-elastic networks, extending a recent result of Dall'Acqua--Novaga--Pluda.
ISSN:2331-8422