Oxygen defect engineering endows Co3O4 nanosheets with advanced aluminum ion storage

Atomic-level structure modulation is an effective way to boost ionic diffusion kinetics and improve the cycling stability. To relieve the strong coulombic ion–lattice interactions originating from trivalent Al3+ ions, herein oxygen-deficient Co3O4−x porous nanosheets are fabricated via a facile NaBH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-09, Vol.10 (35), p.18322-18332
Hauptverfasser: Zheng, Jiening, Xu, Tian, Xia, Guanglin, Yu, Xuebin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomic-level structure modulation is an effective way to boost ionic diffusion kinetics and improve the cycling stability. To relieve the strong coulombic ion–lattice interactions originating from trivalent Al3+ ions, herein oxygen-deficient Co3O4−x porous nanosheets are fabricated via a facile NaBH4 reduction strategy using a metal–organic framework template. Electrochemical kinetics analysis and theoretical calculation results reveal good pseudocapacitive property, appropriate diffusion capability and Al3+ formation energy, corroborating fast Al3+ ion storage/release kinetics and high Al3+ storage capacity. Specifically, Co3O4−x porous nanosheets exhibit a high reversible capacity of 442.3 mA h g−1 at 1.0 A g−1 and retain 104.2 mA h g−1 after 1800 cycles, remarkably higher than those of the previously reported Co3O4-based cathode materials. Furthermore, ex situ analyses reveal the conversion reaction mechanism of the Co3O4−x cathode, followed by its high structural stability upon extended cycling.
ISSN:2050-7488
2050-7496
DOI:10.1039/d2ta04165k