Berger-Coburn-Lebow representation for pure isometric representations of product system over \(\mathbb N^2_0\)

We obtain Berger-Coburn-Lebow (BCL)-representation for pure isometric covariant representation of product system over \(\mathbb{N}_0^2\). Then the corresponding complete set of (joint) unitary invariants is studied, and the BCL- representations are compared with other canonical multi-analytic descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-10
Hauptverfasser: Saini, Dimple, Trivedi, Harsh, Shankar Veerabathiran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We obtain Berger-Coburn-Lebow (BCL)-representation for pure isometric covariant representation of product system over \(\mathbb{N}_0^2\). Then the corresponding complete set of (joint) unitary invariants is studied, and the BCL- representations are compared with other canonical multi-analytic descriptions of the pure isometric covariant representation. We characterize the invariant subspaces for the pure isometric covariant representation. Also, we study the connection between the joint defect operators and Fringe operators, and the Fredholm index is introduced in this case. Finally, we introduce the notion of congruence relation to classify the isometric covariant representations of the product system over \(\mathbb{N}_0^2\).
ISSN:2331-8422
DOI:10.48550/arxiv.2209.04600