Integrating an aerosolized drug delivery device with conventional static cultures and a dynamic airway barrier microphysiological system

Organ on a chip or microphysiological systems (MPSs) aim to resolve current challenges surrounding drug discovery and development resulting from an unrepresentative static cell culture or animal models that are traditionally used by generating a more physiologically relevant environment. Many differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomicrofluidics 2022-09, Vol.16 (5), p.054102-054102
Hauptverfasser: Karra, Nikita, Fernandes, Joao, Swindle, Emily Jane, Morgan, Hywel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organ on a chip or microphysiological systems (MPSs) aim to resolve current challenges surrounding drug discovery and development resulting from an unrepresentative static cell culture or animal models that are traditionally used by generating a more physiologically relevant environment. Many different airway MPSs have been developed that mimic alveolar or bronchial interfaces, but few methods for aerosol drug delivery at the air–liquid interface exist. This work demonstrates a compact Surface Acoustic Wave (SAW) drug delivery device that generates an aerosol of respirable size for delivery of compounds directly onto polarized or differentiated epithelial cell cultures within an airway barrier MPS and conventional static inserts. As proof of principle, the SAW drug delivery device was used to nebulize viral dsRNA analog poly I:C and steroids fluticasone and dexamethasone without disrupting their biological function.
ISSN:1932-1058
1932-1058
DOI:10.1063/5.0100019