Musical Isomorphisms and Statistical Manifolds
Let ( M , g , ∇ ( α ) ) be a statistical manifold and g ♭ : T M → T ∗ M be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the α -vertical and α -horizontal lifts on the tangent bundle of the statistical manifold M , we construct the g - α -vertical and g - α -horizont...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-10, Vol.19 (5), Article 225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 19 |
creator | Peyghan, Esmaeil Nourmohammadifar, Leila Uddin, Siraj |
description | Let
(
M
,
g
,
∇
(
α
)
)
be a statistical manifold and
g
♭
:
T
M
→
T
∗
M
be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the
α
-vertical and
α
-horizontal lifts on the tangent bundle of the statistical manifold
M
, we construct the
g
-
α
-vertical and
g
-
α
-horizontal lifts on the cotangent bundle with the aid of the musical isomorphism
g
♭
. We prove that the Lie bracket of the
α
-horizontal lifts of vector fields to tangent and cotangent bundles is
g
♭
-related if and only if the
α
-curvature tensor is an even function of
α
. Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen
(
α
)
-connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study. |
doi_str_mv | 10.1007/s00009-022-02141-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712565906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712565906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-5cef0fe7150b9a32896d4da5a6d1a0ea38887b2752b476d1140c68c35b54eb1f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeA562zn0mOUtQWWjyo52Wz2WhKPupOcrC_3rURvTkwzDDzvjPwEHLNYMEA0luEGDkFzmMyyejhhMyY1kCVVPL0t5f6nFwg7gB4zgSfkcV2xNrZJllj3_Zh_15ji4ntyuR5sEONw3G5tV1d9U2Jl-Sssg36q586J68P9y_LFd08Pa6XdxvquMwHqpyvoPIpU1DkVvAs16UsrbK6ZBa8FVmWpQVPFS9kGmdMgtOZE6pQ0hesEnNyM93dh_5j9DiYXT-GLr40PGVcaZWDjio-qVzoEYOvzD7UrQ2fhoH55mImLiZyMUcu5hBNYjJhFHdvPvyd_sf1BYGeZQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712565906</pqid></control><display><type>article</type><title>Musical Isomorphisms and Statistical Manifolds</title><source>Springer Nature - Complete Springer Journals</source><creator>Peyghan, Esmaeil ; Nourmohammadifar, Leila ; Uddin, Siraj</creator><creatorcontrib>Peyghan, Esmaeil ; Nourmohammadifar, Leila ; Uddin, Siraj</creatorcontrib><description>Let
(
M
,
g
,
∇
(
α
)
)
be a statistical manifold and
g
♭
:
T
M
→
T
∗
M
be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the
α
-vertical and
α
-horizontal lifts on the tangent bundle of the statistical manifold
M
, we construct the
g
-
α
-vertical and
g
-
α
-horizontal lifts on the cotangent bundle with the aid of the musical isomorphism
g
♭
. We prove that the Lie bracket of the
α
-horizontal lifts of vector fields to tangent and cotangent bundles is
g
♭
-related if and only if the
α
-curvature tensor is an even function of
α
. Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen
(
α
)
-connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-022-02141-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Fields (mathematics) ; Isomorphism ; Lifts ; Manifolds ; Mathematics ; Mathematics and Statistics ; Tensors</subject><ispartof>Mediterranean journal of mathematics, 2022-10, Vol.19 (5), Article 225</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-5cef0fe7150b9a32896d4da5a6d1a0ea38887b2752b476d1140c68c35b54eb1f3</citedby><cites>FETCH-LOGICAL-c249t-5cef0fe7150b9a32896d4da5a6d1a0ea38887b2752b476d1140c68c35b54eb1f3</cites><orcidid>0000-0002-2713-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-022-02141-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-022-02141-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Peyghan, Esmaeil</creatorcontrib><creatorcontrib>Nourmohammadifar, Leila</creatorcontrib><creatorcontrib>Uddin, Siraj</creatorcontrib><title>Musical Isomorphisms and Statistical Manifolds</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>Let
(
M
,
g
,
∇
(
α
)
)
be a statistical manifold and
g
♭
:
T
M
→
T
∗
M
be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the
α
-vertical and
α
-horizontal lifts on the tangent bundle of the statistical manifold
M
, we construct the
g
-
α
-vertical and
g
-
α
-horizontal lifts on the cotangent bundle with the aid of the musical isomorphism
g
♭
. We prove that the Lie bracket of the
α
-horizontal lifts of vector fields to tangent and cotangent bundles is
g
♭
-related if and only if the
α
-curvature tensor is an even function of
α
. Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen
(
α
)
-connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study.</description><subject>Fields (mathematics)</subject><subject>Isomorphism</subject><subject>Lifts</subject><subject>Manifolds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tensors</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeA562zn0mOUtQWWjyo52Wz2WhKPupOcrC_3rURvTkwzDDzvjPwEHLNYMEA0luEGDkFzmMyyejhhMyY1kCVVPL0t5f6nFwg7gB4zgSfkcV2xNrZJllj3_Zh_15ji4ntyuR5sEONw3G5tV1d9U2Jl-Sssg36q586J68P9y_LFd08Pa6XdxvquMwHqpyvoPIpU1DkVvAs16UsrbK6ZBa8FVmWpQVPFS9kGmdMgtOZE6pQ0hesEnNyM93dh_5j9DiYXT-GLr40PGVcaZWDjio-qVzoEYOvzD7UrQ2fhoH55mImLiZyMUcu5hBNYjJhFHdvPvyd_sf1BYGeZQ0</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Peyghan, Esmaeil</creator><creator>Nourmohammadifar, Leila</creator><creator>Uddin, Siraj</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2713-6253</orcidid></search><sort><creationdate>20221001</creationdate><title>Musical Isomorphisms and Statistical Manifolds</title><author>Peyghan, Esmaeil ; Nourmohammadifar, Leila ; Uddin, Siraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-5cef0fe7150b9a32896d4da5a6d1a0ea38887b2752b476d1140c68c35b54eb1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Fields (mathematics)</topic><topic>Isomorphism</topic><topic>Lifts</topic><topic>Manifolds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peyghan, Esmaeil</creatorcontrib><creatorcontrib>Nourmohammadifar, Leila</creatorcontrib><creatorcontrib>Uddin, Siraj</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peyghan, Esmaeil</au><au>Nourmohammadifar, Leila</au><au>Uddin, Siraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Musical Isomorphisms and Statistical Manifolds</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><artnum>225</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>Let
(
M
,
g
,
∇
(
α
)
)
be a statistical manifold and
g
♭
:
T
M
→
T
∗
M
be a musical isomorphism from the tangent bundle onto the cotangent bundle. Using the
α
-vertical and
α
-horizontal lifts on the tangent bundle of the statistical manifold
M
, we construct the
g
-
α
-vertical and
g
-
α
-horizontal lifts on the cotangent bundle with the aid of the musical isomorphism
g
♭
. We prove that the Lie bracket of the
α
-horizontal lifts of vector fields to tangent and cotangent bundles is
g
♭
-related if and only if the
α
-curvature tensor is an even function of
α
. Also, we get statistical structures via the musical isomorphism in the cotangent bundle. Finally, we give the notion of the Schouten–Van Kampen
(
α
)
-connection associated with the statistical connection on the cotangent bundles. Furthermore, we provide some non-trivial examples as applications to this study.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-022-02141-z</doi><orcidid>https://orcid.org/0000-0002-2713-6253</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2022-10, Vol.19 (5), Article 225 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2712565906 |
source | Springer Nature - Complete Springer Journals |
subjects | Fields (mathematics) Isomorphism Lifts Manifolds Mathematics Mathematics and Statistics Tensors |
title | Musical Isomorphisms and Statistical Manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Musical%20Isomorphisms%20and%20Statistical%20Manifolds&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Peyghan,%20Esmaeil&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.artnum=225&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-022-02141-z&rft_dat=%3Cproquest_cross%3E2712565906%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712565906&rft_id=info:pmid/&rfr_iscdi=true |